Dimension of a minimal nilpotent orbit

نویسنده

  • Weiqiang Wang
چکیده

We show that the dimension of the minimal nilpotent coadjoint orbit for a complex simple Lie algebra is equal to twice the dual Coxeter number minus two. Let g be a finite dimensional complex simple Lie algebra. We fix a Cartan subalgebra h, a root system ∆ ⊂ h and a set of positive roots ∆+ ⊂ ∆. Let ρ be half the sum of all positive roots. Denote by θ the highest root and normalize the Killing form ( , ) : g × g → C by the condition (θ, θ) = 2. The dual Coxeter number h can be defined as h = (ρ, θ) + 1 (cf. [K]). This intrinsic number of the Lie algebra g plays an important role in representation theory(cf. e.g. [K]). As is well known there exists a unique nonzero nilpotent (co)adjoint orbit of minimal dimension. A coadjoint orbit can be identified with an adjoint one by means of the Killing form. For more detail on the nilpotent orbits, we refer to the excellent exposition [CM] and the references therein. Our result of this short note is the following theorem. Theorem 1 The dimension of the minimal nonzero nilpotent orbit equals 2h − 2. We start with the following well-known lemma, cf. for example, Lemma 4.3.5, [CM]. Lemma 1 The dimension of the minimal nonzero nilpotent orbit is equal to one plus the number of positive roots not orthogonal to θ. ∗1991 Mathematics Subject Classification. Primary 22E10; Secondary 17B20. Partially supported by NSF grant DMS-9304580.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Geometry and Branching Laws for Unitary Representations Attached to Minimal Nilpotent Orbits

For the unitary representation of O(p; q) attached to the minimal nilpotent coadjoint orbit, we explicitly calculate its restriction to certain natural dual pairs in O(p; q). We furthermore show how the results are compatible with the orbit method, in particular when viewing the minimal nilpotent orbit as belonging to the limit set of semisimple orbits. R esum e Pour la repr esentation unitaire...

متن کامل

Nilpotent Orbits and Theta-stable Parabolic Subalgebras

In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra g under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on pC , the “complex symmetric space associated with g”. The Kostant-S...

متن کامل

On minimal degrees of faithful quasi-permutation representations of nilpotent groups

By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....

متن کامل

Degenerations of nilpotent Lie algebras

In this paper we study degenerations of nilpotent Lie algebras. If λ, μ are two points in the variety of nilpotent Lie algebras, then λ is said to degenerate to μ , λ→deg μ , if μ lies in the Zariski closure of the orbit of λ . It is known that all degenerations of nilpotent Lie algebras of dimension n < 7 can be realized via a one-parameter subgroup. We construct degenerations between characte...

متن کامل

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999